NOAA Technical Memorandum ERL ARL-64

A MESOSCALE TRANSPORT AND DIFFUSION MODEL

Roland R. Draxler

Air Resources Laboratory Silver Spring, Maryland June 1977

NOAA Technical Memorandum ERL ARL-64

A MESOSCALE TRANSPORT AND DIFFUSION MODEL Roland R. Draxler

Air Resources Laboratory Silver Spring, Maryland June 1977

ATMOSPHERIC SCIENCES LIBRARY
AUG 101977
N.O.A.A.
U. S. Dept. of Commerce

CONTENTS

Page
LIST OF SYMBOLS iv
ABSTRACT 1

1. INTRODUCTION 1
2. MODEL INPUT REQUIREMENTS 2
2.1 Meteorological Input Data 2
2.2 Transport and Diffusion Input Parameters 3
3. VERTICAL TRANSPORT LAYER 4
3.1 Vertical Mixing Coefficients 4
3.2 Vertical Diffusion Finite Difference Model 5
4. TRAJECTORY SEGMENT DISPLACEMENT 7
4.1 Vertical and Horizontal Averaging of Winds 7
4.2 Use of the Surface Wind Network 8
5. RECEPTOR-ORIENTED PUFF DIFFUSION MODEL 9
6. DESCRIPTION OF THE COMPUTER CODE OUTPUT 10
6.1 Title Page 10
6.2 Meteorological Input Data 11
6.3 Trajectory Segment Computation Table 11 11
6.4 Bottom and Top of the Transport Layer 12 12
6.5 Lowest and Highest Stable Layer 13
6.6 Wind Direction Change and Wind Speed Shear 13
6.7 Trajectory Segment Endpoints 13 13
6.8 Mercator Trajectory Plot 13
6.9 Receptor Diffusion Model 13
7. CONCLUDING REMARKS 14
8. ACKNOWLEDGMENT 14
9. REFERENCES 14

LIST OF SYMBOLS

$M=$ Mass,$L=$ Length, $\quad T=$ Time, $\quad K=$ Degrees Kelvin Temp.

C $\left(M L^{-3}\right)$
$\bar{C}_{a}\left(M L^{-3}\right)$
$C_{b}\left(L^{-1}\right)$
$C_{W}\left(\mathrm{ML}^{-3}\right)$
d (L)
E
F $\quad\left(M L^{-2} T^{-1}\right)$
$g\left(L T^{-2}\right)$
$K_{z} \quad\left(L^{2} T^{-1}\right)$
L (L)
$P\left(L T^{-1}\right)$
Q (M)
R (L)
R_{i}
$r(\mathrm{~L})$
$t \quad(T)$
$\Delta t(T)$
$\Delta T \quad(T)$
$u \quad\left(L T^{-1}\right)$
$\vec{V} \quad\left(L T^{-1}\right)$
$\vec{V}_{a}\left(L T^{-1}\right)$
$v_{d}\left(\mathrm{LT}^{-1}\right) \quad$ Dry deposition velocity.
(L) - Height.
(L) - Height differences.
$\Delta Z_{i}(L)$
α
γ
δ
$\theta \quad(K)$
$\bar{\theta} \quad(K)$
p $\left(\mathrm{ML}^{-3}\right)$
oh (L)
ϕ
$\xi \quad(\mathrm{L})$ finite difference model.

- Alignment weighting factor.
$\left(L^{-2}\right) \quad$ Distance weighting factor.
- Potential temperature.
- Mean potential temperature.
- Air density.
- Dimensionless mixing ratio.
- Depth of a box in the finite difference model.
- Distance between centers of adjacent boxes in the
- Horizontal puff growth exponent.
- Horizontal standard deviation of material in the puff.
- Angle between the wind direction and a line from the wind station to the trajectory segment starting point.
- Linear vertical weighting factor.

A MESOSCALE TRANSPORT AND DIFFUSION MODEL

Roland R. Draxler
Air Resources Laboratories
Silver Spring, MD 20910

ABSTRACT

Abstract

A mesoscale Lagrangian trajectory transport and diffusion model has been developed which takes into account stability changes along the trajectory. The required input data for trajectory computations are hourly surface meteorological observations and standard upper air observations. A one-dimensional finite difference model for vertical diffusion and deposition is used in the calculations with each trajectory. The vertical mixing coefficient is based upon the Pasquill stability at each trajectory segment. Dry deposition and washout are calculated if required. The transport layer, that layer containing 90% of the mass as calculated by the finite difference method, grows with time along the trajectory. Air concentrations are calculated for specified sampling periods at selected receptor locations.

1. INTRODUCTION

The Air Resources Laboratories (ARL) has developed a mesoscale trajectory transport and diffusion model which is designed to simulate the behavior of individual plumes and calculate short-term air concentrations. The transport is Lagrangian, in that the spatially averaged wind field near the trajectory segment is used to compute the displacement during each interval.

The trajectory computation method is similar to the one developed for continental-regional transport by Heffter and Taylor (1975), but utilizes a denser network of hourly surface observations. The input data come from a meteorological tape that combines hourly surface winds, temperature, dewpoint, pressure, total 6-hour precipitation, and calculated Pasquill stability classes. In addition, upper air observations of wind and temperature are included when available; usually every 12 hours.

Vertical diffusion is calculated concurrent with the transport. A onedimensional (vertical) finite difference diffusion model is run with each trajectory. The vertical mixing coefficient is based upon the calculated Pasquill stability at each trajectory segment. Dry deposition and washout (determined from the observed precipitation) may be calculated along each trajectory. The vertical layer in the finite difference model containing 90% of the mass is considered the transport layer through which the upper air winds are averaged for the subsequent trajectory displacement calculation.

The upper air winds are linearly interpolated to the required time and spatially averaged by distance and alignment weighting factors in the layer determined from the vertical diffusion. The surface observations are made
more frequently and are derived from a denser network than the upper air reports. The upper air soundings are used to determine adjustment factors to convert the surface winds to represent the desired layer winds. The adjusted surface winds are then considered to be the average transport winds for computing the trajectory displacement.

A pollutant puff is assumed to be released with each trajectory and average air concentrations are calculated for specified sampling periods at selected receptor locations. The vertical distribution of material in each puff is calculated by the finite difference model. The puff is then spread horizontally assuming a Gaussian distribution.

The chief advantages of this transport-diffusion method are that the height of the transport layer is allowed to increase as the emitted material spreads vertically, as determined by the stability conditions along each trajectory, and hourly surface weather data are incorporated.

2. MODEL INPUT REQUIREMENTS

2.1 Meteorological Input Data

An operational meteorological input data tape is produced prior to running the transport-diffusion model. This tape combines the data from two sources: U.S. Air Force Global Weather Center Surface Data extracted by the NOAA National Climatic Center (NCC, 1975) and upper level wind and temperature data extracted by ARL from the United States Air Force Environmental Technical Applications Center (USAF-ETAC, 1972) tapes (see Heffter and Taylor, 1975) available from NCC.

The NCC tape includes stations (and ships) located between $100^{\circ} \mathrm{W}$ and $60^{\circ} \mathrm{W}, 50^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{N}$. About 600 surface observation stations report each hour in this area. The tapes of upper level data cover the continental United States and southern Canada; about 130 stations report every 12 hours. Although meteorological data are available worldwide from these sources, ARL's present interest is limited to the areas described.

The operational tape, where observations appear in time sequence, reduces tape manipulation and avoids repetitive operations. It can cover a reduced grid, for example the one shown in Figure 1. This area includes three states, and about 60 surface stations and 6 upper level stations (only 4 report regularly). One year of data can be written on a tape (9 track, 1600 bits per inch, binary format). Each three-digit number in Figure 1 indicates the percent reporting frequency for a particular station during the year 1975. A starred border indicates an upper air station. The frequencies are based on hourly observations for the surface stations and 12-hourly observations for the upper-air stations. The denser network and more frequent reports of the surface stations emphasize the utility of incorporating these data in any mesoscale model.

The surface observations on the NCC tape include 35 variables, many of them not needed for the present model structure. These have been reduced to

10: World Meteorological Organization block-station number, station longitude and latitude, station elevation above mean sea level (msl), wind direction, wind speed, station pressure, dry bulb temperature, dew point depression, and total 6-hour precipitation.

In addition to the above data, the estimated Pasquill stability category (A to G) is added to each surface observation. It is computed during the production of the operational tape and it follows the method given by Turner (1964), depending upon cloud cover, cloud ceiling, solar elevation angle, and wind speed. This method has been adopted by NCC in producing stability windroses at selected stations and is commonly referred to as the "STAR" (STability ARray) program. A complete description of the STAR method is given by Doty et al. (1976).

The upper air data, if available at a particular hour, follow the surface information on the tape. The first record gives the block station number, station longitude and latitude, station elevation, station height above average terrain (see Heffter and Taylor, 1975), and the number of levels of observations that follow. Each level contains the height of the observation above msl, the wind direction, wind speed, pressure, and temperature. No observations above 500 mb are included on the operational tape.

The upper level wind and temperature data on the ETAC tapes do not always appear at the same levels. To simplify data computations, temperatures and pressure were linearly interpolated to any wind levels where no corresponding temperature existed.

2.2 Transport and Diffusion Input Parameters

The computer code is divided into two sections; the input section and the main program. Input parameters that control model computations are utilized in two ways: parameters that are changed most frequently are read in on cards and those that change less frequently are assigned values within the input program. In the input section the dimensions of all arrays are computed. These dimensions are then substituted into the main program before execution begins.

Some of the frequently varied input parameters include:
a. location of the transport origin,
b. starting date,
c. the number of days of computations desired,
d. the timein days that each puff is followed,
e. the maximum height to which winds may be averaged, and
f. the boundaries of any output maps.

The values of some of the other trajectory parameters that may be changed include: the horizontal radius in which winds are to averaged (200 nmi for upper air stations and 75 nmi for surface stations), the number of trajectories started each day (24), the time interval for trajectory displacement computations (1 hour), and the height of the source (12 m).

Calculations of vertical diffusion in the finite difference model may include dry deposition (by specifying a deposition velocity) and washout (by specifying a precipitation rate or using the actual observed precipitation rate recomputed each 6 hours). The maximum value of vertical diffusivity that is currently specified for each Pasquill stability is given in Table 1. The origin of this table is discussed in more detail in section 3.1.

Table 1. Pasquill Stability and Vertical Diffusivity

| Pasquill Stability Category | A | B | C | D | E | F | G |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vertical Diffusivity $\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$ | 50 | 30 | 15 | 7 | 3 | 1 | 0.3 |

Receptor locations must be specified for predictions of air concentration, and the frequency at which the pollutant puff is sampled (every 0.5 hours) at the receptor may vary. Horizontal puff growth may also be made dependent on Pasquill stability by specifying a growth rate for each stability category. At this time the growth rate is assumed to be the same for all stability categories.

3. VERTICAL TRANSPORT LAYER

A vertical diffusion finite difference model is run with each trajectory (pollutant puff). The extent of the vertical distribution of material determines through which layer the winds are to be averaged for computation of the trajectory transport. The rate of vertical mixing depends upon the magnitude of the mixing coefficients, K_{z}, specified at each box boundary.

3.1 Vertical Mixing Coefficients

The vertical mixing coefficient profile that controls the vertical diffusion for a trajectory segment is determined from the Pasquill stability and Richardson number profile at the observation points nearest that trajectory segment starting point.

First a value of K_{2} at 150 m is selected on the basis of the Pasquill stability (Table 1). The K_{z} below 150 m is given by

$$
\begin{equation*}
K_{z}(<150 \mathrm{~m})=K_{z}(\text { at } 150 \mathrm{~m}) \bullet \mathrm{z} / 150 \text {, } \tag{1}
\end{equation*}
$$

and $K z$ is constant above 150 m . The values in Table 1 have been determined by diziding the likely range of values of K_{z} into seven arbitrary intervals. This range of K_{z} has been determined from the results of studies by Shaffer (1973) and Guedalia et a1. (1974). A sunmary of data from Shaffer (1973) is shown in Figure 2. He determined K_{z} from Radon flux measurements on a tower. Diurnal variations of K_{z} were averaged for several months.

Second, the K_{z} profile for the appropriate stability category is then reduced to a low value, $0.1 \mathrm{~m}^{2} \mathrm{~s}^{-1}$, in those layers where the Richardson number, given by

$$
\begin{equation*}
R_{i}=\frac{g\left(z_{2}-z_{1}\right)}{\bar{\theta}} \frac{\left(\theta_{2}-\theta_{1}\right)}{\left(u_{2}-u_{1}\right)^{2}} \tag{2}
\end{equation*}
$$

exceeds a preselected value, and where subscript 2 is the upper observational level and subscript 1 is the lower level. These low values of K_{z} simulate the stable layers where a limited exchange of mass occurs.

The upper-level soundings are usually taken every 12 hours. Therefore the soundings are linearly interpolated to the same interval that trajectories are started. The results probably do not adequately reflect the diurnal changes in the planetary boundary layer. One of the planned uses of the transport-diffusion model is the simulation of special case studies, and for these it is likely that more frequent meteorological sounding data will be available.

3.2 Vertical Diffusion Finite Difference Model

The finite difference model is a one-dimensional (vertical)box model in which the rate of diffusion is determined by specifying K_{z} at the box interfaces. K_{z} may change with height and time as described in the previous section. One advantage of the finite difference method is that it permits deposition to be treated in a more realistic fashion. Material is removed from the lowest box rather than the loss being distributed instantaneously throughout the column, as is done in the widely used "source depletion" method of Chamberlain (see Van der Hoven, 1968).

The finite difference method follows the one developed by Machta (1966) for large scale diffusion. We consider a column of unit horizontal area divided into boxes of various heights. A particular box is denoted by i, and values appropriate to the upper and lower boundaries of the box are denoted by \bar{i} and $\underset{i}{ }$ respectively.

The net flux of material, F_{i}, into the i-th box is given by

$$
\begin{equation*}
F_{i}=\left[K_{z} \rho \quad \partial X / \partial Z\right]_{\bar{i}}-\left[K_{z} \quad \rho \quad \partial X / \partial Z\right]_{\underline{i}} \tag{3}
\end{equation*}
$$

The change with respect to time of the mixing ratio of the $i-t h$ box of vertical extent ΔZ_{i} is expressed as

$$
\begin{equation*}
\partial X / \partial t=F_{i} \rho_{i}^{-1} \Delta Z_{i}^{-1} \tag{4}
\end{equation*}
$$

Equations 3 and 4 are solved numerically through finite difference approximations forward in time and centered in ΔZ. A more complete description of this diffusion model, including tests of the effects of diurnal stability variations with various dry deposition velocities, has been reported by Draxler and Elliott (1977).

To maintain computational stability and to minimize computer time, the time step is reevaluated for the K_{z} profile that applies to the diffusion during each trajectory segment. The time step, given by

$$
\begin{equation*}
\Delta t=0.25 \Delta z_{\underline{i}}^{2} K_{\underline{z}}^{-1} \tag{5}
\end{equation*}
$$

is evaluated at each box interface and the smallest value of Δt for the K_{z} profile is used for the computation.

At present, there are 20 boxes, in 4 groups of 5 boxes, the lowest are 25 m each, then $50 \mathrm{~m}, 100 \mathrm{~m}$ and 250 m to the top of the model for a total model depth of 2125 m . More boxes may be added in order to deal with a deeper mixed layer. No diffusion is permitted through the top of the model, but dry deposition from the bottom box can occur, as well as wet deposition from all boxes. A unit source is injected into a preselected box for each trajectory.

For dry deposition, the deposition velocity (v_{d}) multiplied by the concentration in the lowest box (\#1) gives the mass deposited per unit time. The mixing ratio in the lowest box after dry deposition is given by

$$
\begin{equation*}
\left.x_{(1, t}+\Delta t\right)=x_{(1, t)}\left[1-v_{d} \Delta t / \Delta z_{]}\right] \tag{6}
\end{equation*}
$$

where $X_{(1, t)}$ is the mixing ratio in the lowest box before deposition.
Although it is possible to modify the deposition velocity with each trajectory segment, at present a constant deposition velocity is used for all trajectories.

According to the method of Heffter and Ferber (1975), wet deposition is calculated using an average scavenging ratio $\left(4.2 \times 10^{5}\right)$ derived from Engelmann (1970). The scavenging ratio is defined by

$$
\begin{equation*}
E=C_{w} / \bar{C}_{a}, \tag{7}
\end{equation*}
$$

where \bar{C}_{a} is the average concentration of material in the air and C_{w} is the concentration of material in the rainwater at the ground.

The mixing ratio of material in the boxes after wet deposition is given by

$$
\begin{equation*}
\left.X_{(i, t}+\Delta t\right)=X_{(i, t)}\left[1-\frac{E P \Delta t}{L}\right], \tag{8}
\end{equation*}
$$

where $X(i, t)$ is the mixing ratio before wet deposition, P is the precipitation rate, and (i) includes all the boxes within the rain layer, L. The rain layer need not have the same vertical extent as the model. The precipitation rate is determined from the meteorological input data. The 6 -hour total precipitation observations ending at $00,06,12$, and 18 GMT are reported. The precipitation rate used for wet deposition computations is obtained from the nearest reporting station at the next observation time. The precipitation rate is assumed to be uniform during the observation period.

Figures $3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$, and 3 d show a time sequence of a precipitation field for 1 day. Values shown are the 6 -hour totals in millimeters. These figures suggest that the 6 -hour frequency provides sufficient resolution for the mesoscale network.

The finite difference model is run for the duration of the trajectory segment, usually one hour. After the diffusion computation is completed for a segment, air concentrations in the lowest box (ground level) are saved for later use. Also the vertical layer which contains 90% of the mass is computed. This layer represents the transport layer in which the winds are to be averaged to compute the next trajectory endpoint. In this way, the computations allow pollutant puffs to respond to a variety of stability conditions during transport. For instance, vertical growth would be inhibited at night and enhanced during the day. After most of the material is distributed aloft, subsequent stability changes would not affect the transport layer, unless dry deposition alters the vertical air concentration profile.

4. TRAJECTORY SEGMENT DISPLACEMENT

Each trajectory segment endpoint is computed assuming wind persistence for the duration of the segment. The winds are vertically averaged within the transport layer for stations within a prescribed radius of the segment starting points.

The upper level stations report only every 12 hours; therefore the network of surface station winds is incorporated for the trajectory displacement calculation in order to improve the simulation of mesoscale transport.

4.1 Vertical and Horizontal Averaging of Winds

The averaging method used is identical to that described by Heffter and Taylor (1975). The average wind in the layer is computed from the reported winds at levels linearly weighted by the thickness between the mid-levels. The vertically averaged layer wind for station (j) is given by

$$
\begin{equation*}
\vec{V}_{j}=\frac{\sum \xi_{i} \vec{V}_{i}}{\sum \xi_{i}} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{i}=\left[\frac{z_{i+1}+z_{i}}{2}\right]-\left[\frac{z_{i}+z_{i-1}}{2}\right] \tag{10}
\end{equation*}
$$

and (i) specifies the observation level. In Equation 10, the first term cannot exceed the top of the transport layer, and the last term cannot be less than the base of the transport layer.

The averaged layer wind from stations within radius r of the segment starting point are weighted and averaged according to an alignment and distance factor. The final average wind for all stations within radius r is given by

$$
\begin{equation*}
\vec{V}=\frac{\Sigma \delta_{j} \alpha_{j} \vec{v}_{j}}{\Sigma \delta_{j} \alpha_{j}}, \tag{וו}
\end{equation*}
$$

where \vec{V}_{j} is the averaged layer wind from Equation 9 for that station. The alignment weight

$$
\begin{equation*}
\alpha_{j}=1-0.5\left|\sin \phi_{j}\right| \tag{12}
\end{equation*}
$$

and the distance weight

$$
\begin{equation*}
\delta_{j}=d_{j}-2, \tag{13}
\end{equation*}
$$

where d_{j} is the distance from the observed wind to the midpoint of the trajectory segment ($\frac{1}{2} \Delta T{ }_{\mathrm{V}}^{j}$) that would be produced from the wind at that station, and ϕ is the angle between the wind direction and the line from the observation point to the trajectory segment starting point. Alignment weighting is introduced in order to give the observations upwind and downwind from the segment starting point the greatest weight.

4.2 Use of the Surface Wind Network

The network of surface weather stations are utilized in computing trajectories. The displacement of the endpoint is determined from an adjusted surface wind times the time interval between segments. A layer wind is developed at the surface station on the basis of the relationship between the layer and surface wind at the upper air station. The steps are:
a. A spatially averaged layer wind from the upper air stations is computed (Eqs. 9 and 11).
b. A spatially averaged surface wind $\left(\vec{V}_{j}=\vec{V}_{i}\right.$ for $\left.\mathrm{i}=1\right)$ from the upper air stations is computed (Eq. 11).
c. The directional change and ratio of wind speeds between the averaged surface (b) and layer (a) wind are determined.
d. A spatially averaged surface wind from the surface stations is computed (Eq. 11).
e. The average wind from (d) is adjusted to represent a layer wind by the directional change and speed ratio determined in (c).

The final wind computed in (e) is used for the trajectory segment displacement.
The direction and speed ratios are recorded for each segment and printed in tabular form. Generally, as the puff grows vertically, the directional change and speed ratio of layer wind to surface wind increases.

One problem with the surface wind adjustment method is the infrequent upper level observations. These observations have been interpolated to hourly values so that direct comparison with hourly observed surface-data could be made. The travel time over the mesoscale region is about the same order as the frequency of the upper level observations, so these data are unsatisfactory as the only meteorological input. It is believed that the uncertainties in the surface wind adjustment are outweighed by the benefits derived from more frequent observations and denser coverage, especially when all the averaging procedures are considered.

5. RECEPTOR-ORIENTED PUFF DIFFUSION MODEL

A puff of pollutant material is assumed to be released with each trajectory. When trajectories are started each hour, for example, the material in the puff is set equal to the mass of material emitted from the source during one hour.

The vertical diffusion of a puff (including any dry and wet deposition) is computed by the finite difference method during the transport calculations. The surface air concentration is calculated at each trajectory segment endpoint for a column of unit horizontal area.

The horizontal distribution of material (Heffter and Ferber, 1975) at a trajectory segment endpoint when expanded in a Taylor series is given by

$$
\begin{equation*}
\sigma_{h}(t+\Delta T)=\sigma_{h}(t)+\Delta T \frac{d \sigma_{h}}{d t} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d \sigma_{h}}{d t}=0.5 \gamma t(\gamma-1) \text {, } \tag{15}
\end{equation*}
$$

and t is in seconds and σ in meters. The horizontal growth exponent, γ, is dependent upon the Pasquill stability at each trajectory segment. Faster growth rates are indicated by larger values of γ. When $\gamma=1.0$, Equation 14 reduces to that given by Heffter and Ferber (1975). At this time the variation of γ with stability is uncertain, and $\gamma=1.0$ is used for all cases.

Several receptor locations may be selected. As the center of the puff passes within $4 \sigma_{h}$ of a receptor, the surface air concentration at the receptor is given by

$$
\begin{equation*}
C=Q C_{b} \frac{1}{2 \pi \sigma_{h}^{2}} \exp \frac{-R^{2}}{2 \sigma_{h}^{2}} \tag{16}
\end{equation*}
$$

where C_{b} is the normalized air concentration from the finite difference model (the mixing ratio in the lowest box times the air density divided by the initial unit source).

The concentration contributions from each puff that passes the receptor during a selected sampling period are summed. The final output lists the average air concentration for each sampling period and the contribution from each puff that passed within $4 \sigma_{h}$ during the sampling period.

The interval at which puff concentrations are recorded at a receptor may be varied. If puffs are sampled too infrequently, some may pass the receptor without contributing to the computed air concentration. The proper puff sampling interval depends upon the puff size and the transport speed. If one assumes that puffs should be sampled at least every one σ, $\gamma=1.0$ (Eqs. 14 and 15), and that the mean transport speed is $5 \mathrm{~ms}^{-1}$, then the sampling interval is as given in Table 2 for several downwind receptor distances.

Table 2. Suggested Puff Sampling Interval

Receptor Distance (km)	10	20	40	80	160
Sampling Interval (min)	3	7	14	27	54

6. DESCRIPTION OF THE COMPUTER CODE OUTPUT

Each section that follows describes the computer output from the model in the order the output is printed. Examples are shown for each section. On some computer output tables the right side has been deleted to avoid reducing the size of the table.

6.1 Title Page

The first output page shown in Figure 4 lists some of the program variables. The first group consists of the input cards:
a. An identification and latitude and longitude of the trajectory starting position.
b. The starting date (day, month, year).
c. The number of days of computations.
d. The duration in days that each trajectory is followed.
e. The number of days of meteorological input data.
f. The lower and upper limits of the transport layer in meters.
g. The boundaries (latitude and longitude) of the mercator projection for any output maps.

The second group is a collection of parameters that influence the trajectory computation. These may also be changed, but within the computer code. Numbers in parentheses are values currently in use.
a. The number of trajectories started each day (24 or one each hour).
b. The trajectory segment duration, which is the interval at which the winds are sampled and averaged to compute each segment endpoint (1 hour).
c. The number of input winds per day (24 with the input tape described in this paper).
d. The number of interpolated winds per day. (24-only the less frequent upper level winds are interpolated.)
e. The upper level scan radius is the radius within which the winds at the upper level stations are averaged (200 nautical miles).
f. The surface scan radius is the radius within which the winds at the surface stations are averaged (75 nautical miles).

The third group consists of diffusion-deposition parameters.
a. The box number in the finite difference model (bottom box $=$ 1) in which the initial source material is injected.
b. The dry deposition velocity in $\mathrm{cm} \mathrm{s}^{-1}$.
c. The precipitation rate in $\mathrm{m} \mathrm{s}^{-1}$. It is non-zero when a constant precipitation is assumed for all trajectories and zero when the actual observed precipitation is used.
d. The number of times a puff is sampled during a trajectory segment ($\Delta \mathrm{T} /$ Table 2 sampling interval).

6.2 Meteorological Input Data

An example of the numbers of meteorological stations tabulated on the input tape for each observation is reproduced in Figure 5. On the grid shown in Figure 1 about 60 surface stations report hourly and about 4 upper level wind stations report at $12-h$ intervals. Temperature soundings are 1 isted separately because they are not always reported with the wind sounding.

6.3 Trajectory Segment Computation Table

An example of the number of surface wind stations within radius r used to compute the average wind and the Pasquill stability for each trajectory segment is shown in Figure 6. The trajectory starting time is in the left
column. The two rows to the right of the starting time tabulate the information for each segment of that trajectory, by segment number (one each hour). For the trajectory starting on December 1 at 00Z, segment number 12 would represent that trajectory after 12 hours. Seven surface stations were within the averaging radius and the Pasquill stability category was "D". A blank space between the number of stations and stability category indicates that the winds were averaged as described in this note. A symbol in this space indicates that not all the data were available. These symbols are identified in Table 3.

Table 3. Trajectory Wind Code

Segment 36, just below segment 12, for the same trajectory (1 Dec. 00Z) shows " 2 V " which means that 2 upper level stations were used for transport calculations because no surface stations were within the radius. A blank for the stability in the third print position means that it was not possible to compute the stability at that time and a "D" was assumed. At segment 38, the trajectory was ended for lack of data over the Atlantic Ocean.

6.4 Bottom and Top of the Transport Layer

Figure 7 gives the computed bottom and top of the transport layer for each trajectory segment. Two digits for bottom and two for top represent height in hundredths of meters. When no value is given for the bottom, 0 meters is assumed and the space is left blank. A "120" would mean the layer was from 100 to 2000 m . A 9999 is printed after a trajectory has ended. Comparison with stabilities from Figure 6 shows that the transport layer grows more quickly during unstable Pasquill stabilities than during more stable conditions.

6.5 Lowest and Highest Stable Layer

Figure 8 gives the lowest and highest level in hundredths of meters where the Richardson number exceeded the preselected value. The heights are read the same way as in Figure 7. These two levels, and possibly others in between, are where the value of K_{z} has been reduced to simulate restricted mixing. The finite difference model is set for a maximum of 2125 m at present; however, stable layers may be indicated to the maximum height of the observed data (about 5000 m).

6.6 Wind Direction Change and Wind Speed Shear

The adjustment applied to the spatially averaged surface wind at each segment is given in Figure 9. The first two digits represent the value in degrees added to the average wind direction. A positive number indicates veering with height. A value of 98 indicates an addition of 98 degrees or greater. A value of 99 indicates the trajectory has been terminated. The last two digits represent the value (times 10) by which the surface wind speed was multiplied; for instance, 19 indicates that the average surface wind was multiplied by 1.9. A value of 98 is for 9.8 and greater, and 99 indicates the trajectory has been terminated.

6.7 Trajectory Segment Endpoints

Figure 10 lists the latitude and longitude of each trajectory segment endpoint after a specified number of hours (rather than by segment number). This print interval may be varied. The positions are given in hundredths of a degree. The position of a terminated trajectory is given by 9999.

6.8 Mercator Trajectory Plot

Trajectory segment endpoint positions are plotted on a Mercator projection in Figure 11. The plotted symbols that represent the different trajectory starting times are shown in the upper portion of Figure 12. Four trajectories are plotted on a map. For instance, the trajectory that was started at $12 Z$ is represented by the letter "M". The 2-hour position (14Z) along the "M" trajectory is represented by the symbol "1", the 4-hour position (16Z) by the symbol " 2 ". This code is given in the lower portion of Figure 12. The geographic boundaries are produced in another program and are not a normal part of the output from the line printer.

6.9 Receptor Diffusion Model

In Figure 13 a sample page from the diffusion model output is shown. The top line identifies the method of vertical diffusion, in this case the finite difference (box) model, the dry deposition velocity, and the precipitation rate. The second line indicates that actual precipitation was used. In this case the precipitation rate on the top line is the average value that occurred for all trajectory segments normalized to one year. If an average value is assumed for all trajectories, then that value is shown. The third line gives the receptor identification and location. The following groups are the sampling windows, in this case one each hour. The digits under the column headed DATE
identify the time the sampling window directly to the right begins. The first group of three windows (100) starts at $00 Z$ on the 1st. The second group of three windows following below (103) starts at 032 on the 1 st. The third window of each group has been deleted from the figure.

In any one window, for example $12 Z$ on the 1 st (112), 55.566 represents the concentration including a specified background; 42.566 is the concentration above background. The numbers in the next column give the concentration from each puff contributing to that window ($12 Z$ to 13Z), with the time that the puff left the source in parentheses. The puff that left on the 1st, 08002 contributed $0.12 \mathrm{E}+01$ (1.2). Concentration units depend upon the source term.

7. CONCLUDING REMARKS

The model described here is only a first step. Further refinement of the wind averaging and transport methods, and horizontal and vertical diffusion schemes will be guided by the results of a model verification study. The routine emissions of $\mathrm{Kr}-85$ from the Savannah River nuclear fuel reprocessing plant have been sampled at 13 locations within 140 km of the plant. Weekly samples have been collected at these locations for over 2 years and twice-daily samples were obtained during some periods. The measured Kr-85 concentrations will be compared with model predictions.

8. ACKNOWLEDGMENT

Gilbert J. Ferber and others at ARL had many helpful comments during all stages of this work. Albion D. Taylor provided valuable assistance during the development of the computer code.

9. REFERENCES

Doty, S.R., B.L. Wallace, and G.C. Holzworth, 1976: A Climatological Analysis of Pasquill Stability Categories Based on "STAR" Summaries. NOAA EDS NCC, Asheville, NC 28801, 51 p.

Draxler, R.R. and W.P. Elliott, 1977: Long Range Travel of Airborne Material Subject to Dry Deposition, Atmos. Environ., 11(1): 35-40.

Engelmann, R.J., 1970: Scavenging Prediction Using Ratios of Concentrations in Air and Precipitation, Proc. Symp. on Precipitation Scavenging, AEC Symp. Ser. 22, pp. 475-485.

Guedalia, D., C. Allet, and J, and Fontan, 1974; Vertical Exchange Measurements in the Lower Troposphere Using ThB ($\mathrm{Pb}-212$) and Radon $(\mathrm{Rn}-222)$, J. Appl. Meteorol., 13, pp, 27-39.

Heffter, J. L. and G.J. Ferber, 1975: Diffusion-Deposition Models, Part II, A Regional-Continental Scale Transport, Diffusion and Deposition Model, NOAA Tech. Memo, ERL ARL-50, 28 p.

Heffter, J.L. and A.D. Taylor, 1975: Trajectory Model, Part I. A Regional-Continental Scale Transport, Diffusion and Deposition Mode1, NOAA Tech. Memo. ERL ARL-50, 28 pp.

Machta, L., 1966: Some Aspects of Simulating Large Scale Atmospheric Mixing, Tellus, 18: 355-362.

National Climatic Center, 1975: U.S.A.F. Global Weather Central Surface Data, NOAA EDS NCC, Asheville, NC 28801, NCC Library TD9687.

Shaffer, W.A., 1973: Atmospheric Diffusion of Radon in a Time-Height Regime, Ph.D. Thesis, Drexel Univ., June, 109 p., University Microfilms, Ann Arbor, Michigan.

Turner, D.B., 1964: A Diffusion Model for an Urban Area, J. Appl. Meteorol. 3(1): 83-91.

USAF-ETAC, 1972: DATSAV-SYNFILE Upper-Air Meteorological Data, Washington, Navy Yard Annex, Washington, DC.

Van der Hoven, I., 1968: Deposition of Particles and Gases, in Meteorology and Atomic Energy, edited by D.H. Slade, pp. 202-208, USAEC Division of Technical Information, Oak Ridge, TN, TID-24190.

Figure 1. The percent frequency of stations reporting on the reduced grid of the

Figure 2. A composite set of K_{z} profiles adapted from Shaffer (1973).

Figure 3a. The previous 6 h precipitation in millimeters for 00 GMT 1 December 1975.

Figure 3b. The previous 6 h precipitation in millimeters for 06 GMT 1 December 1975.

Figure 3c. The previous 6 h precipitation in millimeters for 12 GMT 1 December 1975.

Figure 3d. The previous 6 h precipitation in millimeters for 18 GMT on 1 December 1975.

INPUT CARDS FOR TRANSPORT COMPUTATIONS

PROGRAM DEFAULT TRANSPORT PARAMETERS

NUMBER OF TRAJECTORIES/DAY TRAJECTORY SEGMENT DURATION NUMBER OF INPUT WINDS/DAY NO OF INTERPOLATED WINDS/DAY UPPER LEVEL SCAN RADIUS SURFACE SCAN RADIUS
1.0

24 24 200.0 75.0

PROGRAM DEFAULT DIFFUSION PARAMETERS

BOX NUMBER OF SOURCE
DRY DEPOSITION VELOCITY CONSTANT PRECIPITATION RATE NUMBER OF PUFF SAMPLES
2.0
0.0
2

Figure 4. A somple from the computer code output: title page.

Figure 5. A sample from the computer code output: meteorological input.
 No mo mo No No No No No No mo No Jo Mo
 $\infty 0^{\circ}$ No mo No no no No No No No mo 10 to
 ∞ N ∞ NO NO NO NO NO NO NO OO NO NO NO
 ND ∞ N ∞ NO No NO NO NO No wo oo mo 1 No

 TM TM JJ OM OM ON LN N ON NA TN 00 NO NO

Figure 11. A sample from the computer code output: trajectory mercator plot for trajectories starting at $12 Z(M), 13 Z(N), 14 Z(0)$, and $15 Z(P)$.

TRAJECTORY SEGMENT MERCATOR MAP SYMBOL TABLE

$\&=$ TWO OR MORE TRAJECTORIES

$1=$	2	HOURS	DURATION
$2=$	4	HOURS	DURATION
$4=$	6	HOURS	DURATION
=	10	HOURS	DURATION
$6=$	12	HOURS	DURATION
$7=$	14	HOURS	DURATION
$8=$	16	HOURS	DURATION
9	18	HOURS	DURATION
=	20	HOURS	OURATION
	22	HOUR	DUR
$=$	24	HOURS	DURA
=	26	HOURS	DURATION
		HOURS	DURATION
5		HOURS	DURATION
	32	HOURS	DURATION
7	34	HOURS	DURAT
	36	HOURS	DURATION
9	38	HOURS	DURATION
0	40	HOURS	DURATION
$1=$	42	HOURS	D
	44	HOURS	DURATION
3	46	HOURS	DURATION
		HOUR	OURATION

[^0]$$
0
$$
$$
1
$$
CONTRIBUTIONS
CONC (DYHRMN)

($\left.\begin{array}{l}\text { (}\end{array}\right)$

$$
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.0
\end{aligned}
$$

S

\[

\]

$$
0.0271
$$

103	$14.000($	0.0
106	$14.000($	0.0
109	$14.000($	0.0
112	56.5661	$42.566)$
115	$14.240($	$0.240)$
118	$14.055($	$0.055)$
121	$14.027($	$0.027)$

KGD

CONC

$$
\begin{aligned}
& \text { CONTRIBUTIONS } \\
& \text { CONC (DYHRMN) }
\end{aligned}
$$

$(* * * * * *)$
$(* * * * * *)$
$(* * * * *)$
$(* * * * * *)$
$(* * * * * *)$
$(* * * * *)$

$$
\begin{aligned}
& \text { CONC } \\
& \text { IIT BKGD } \\
& 14.0001
\end{aligned}
$$

$$
14.0001
$$

$$
\begin{aligned}
& 14.0001 \\
& 14.0001
\end{aligned}
$$

$$
\begin{aligned}
& \text { CONC } \\
& \text { ABOVE BKGD } \\
& 0.0
\end{aligned}
$$

[^1]| 14.3421 | $0.342)$ |
| :--- | :--- |
| 14.1631 | $0.163)$ |
| 14.0621 | $0.062)$ |
| 14.0071 | $0.007)$ |

(******)
$1 \varepsilon \tau G^{\circ} L \tau$
conc

[^0]: Figure 12. A somple from the computer code output: trajectory mercator plot symbol table.

[^1]: Figure 13. A sample from the computer code output: receptor diffusion model. The

